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Abstract

A parallel topology optimization method is proposed to deal with large-scale structural eigenvalue-related design

problems. While existing parallel methods have been employed mainly for finite element analysis, the present work deals

with the entire parallel process of analysis and topology optimization using a parallel processing technique. In the

framework of the physical domain decomposition method, the sensitivity analysis and design variable update are

performed independently in each subdomain with minimum data communication among subdomains. A successive

estimation strategy over design iterations is proposed to expedite the design optimization process. The preconditioned

conjugate gradient method and the subspace iteration method are used as parallel solvers. Several numerical examples

are considered to show the scalability and effectiveness of the present parallel approach in handling large-scale design

problems.

� 2003 Published by Elsevier Ltd.

Keywords: Parallel processing; Topology optimization; Eigenvalue problem; Domain decomposition; Optimality criteria; Subspace

iteration method; Successive estimation
1. Introduction

A major bottleneck to apply topology optimization in large-scale practical design problems is the

extraordinarily large computation time. Typical optimizers usually require tens to hundreds of iterations, so

it is a formidable task to carry out large-scale topology optimization only with a single CPU machine. To

overcome this difficulty, parallelizing large-scale topology optimization will be a practical alternative.

Current parallelization approaches may be classified into two categories: one category to parallelize

numerical analysis itself by means of loop or array partitioning and the other to decompose a domain into a

number of subdomains (Papadrakakis (1993, 1997)). The latter is now more popular and generally more
effective, so the idea of the domain decomposition method will be used for the present parallelization.
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As far as numerical analysis itself is concerned, parallel analysis methods for linear static problems are

now almost established (Bitzarakis et al., 1997; Farhat and Wilson, 1988; Johnson and Mathur, 1990;

Papadrakakis and Bitzarakis, 1996; Su and Fulton, 1993). However, the research on parallelized methods

for eigenvalue problems is still active (Hwang and Parsons, 1994; Katagiri and Kanada, 2001; Lang, 1999;
Lui, 1998; Watkins et al., 1996). With regard to structural design optimization problems, various parallel

processing ideas such as the parallelization of an optimization algorithm (Padula and Stone, 1998), the

combination of the parallel finite element analysis with a serial optimization algorithm (El-Sayed and

Hsiung, 1991), structural optimization based on the domain decomposition (Wang et al., 1996) have been

proposed. Recently, parallel processing techniques have been applied to structural optimization problems

using the zeroth-order optimizer such as genetic algorithms and evolutionary strategies (Thierauf and Cai,

1997; Topping and Leite, 1999).

Though there are many investigations on the parallelization of numerical analysis and some optimization
algorithms, the parallelization of topology optimization has been rarely attempted. Borrvall and Petersson

(2001) and Kim (2001) have worked out parallelized topology optimization. Borrvall and Petersson (2001)

have parallelized the topology optimization for compliance minimization. They employed the precondi-

tioned conjugate gradient method (PCG) and sequential convex programming in the domain decomposition

setting. Kim (2001) has parallelized the static analysis by the iterative PCG solver and the eigenvalue analysis

by the subspace iteration approach. As an optimization algorithm, Borrvall and Petersson (2001) use the

method of moving asymptotes (Svanberg, 1987) while Kim (2001) employs the optimality criteria method.

In the present work, the design domain decomposition method will be employed for efficient parallel-
ization. In the framework of domain decomposition, we will deal with eigenvalue-related topology opti-

mization problems. For eigenvalue analysis, a parallel subspace iteration method effective for decomposed

subdomains is proposed. If the parallel subspace iteration method uses the standard PCG method which

will also be parallelized, it will take more computation time than a typical direct solver because of multiple

right-hand sides. In order to overcome this difficulty, a successive estimation scheme especially suitable for

topology optimization is employed. For optimization, we present the parallelized optimality criteria

method. The proposed parallel strategies are summarized as boxes and several large-scale problems are

considered to check various numerical aspects of the parallelization of topology optimization.
2. Parallelization of eigenvalue analysis

Since we will employ an iterative PCG solver with the subspace iteration method, we begin with the

parallelization of the conjugate gradient method.

2.1. Parallelization of the finite element analysis by the conjugate gradient method

The most popular parallel finite element solver is perhaps the conjugate gradient method coupled with an

appropriate preconditioner. This method consists mainly of matrix–vector and vector–vector multiplica-

tions, so its parallelization is rather straightforward. Fig. 1 illustrates a typical decomposition of a design

domain into Nd subdomains, which will be used throughout the present work. To parallelize the solution

process of the equilibrium equation Ku ¼ F using u that is defined in the decomposed domain, we

decompose K and F as
K ¼
XNd

s¼1

Ks ð1Þ
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Fig. 1. Illustration of the design domain decomposition into subdomains.
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F ¼
XNd

s¼1

Fs ð2Þ
where the stiffness matrix Ks and the external load vector Fs are assembled separately for each subdomain.

In Eqs. (1) and (2), K is the global stiffness matrix and F is the external load vector. The global stiffness

matrix is calculated as
K ¼
XNe

e¼1

ke ¼
XNe

e¼1

Z
Xe

BT
eCeBe dX ð3Þ
where Be is the eth strain-interpolation matrix, Ce is the constitutive matrix and Ne is the number of finite

elements used to discretize a domain. In addition, any preconditioning matrix employed for the precon-

ditioned conjugate gradient (PCG) method can be also decomposed as
D�1 ¼
XNd

s¼1

D
�1

s ð4Þ
where the matrix D is the Jacobi preconditioner (see Angeleri et al., 1989; Coutinho et al., 1991).

The performance of the PCG algorithm is affected by two major factors. The first one is the condition

number of the system matrix K and the other, the initial guess for u. The initial guess for u is usually set

equal to 0 in the PCG algorithm. However, we observe that the approximate solution at the previous

optimization iteration shall be a good initial guess for the current optimization iteration in the case of

topology optimization problems. This idea is implemented and the numerical performance based on it is
compared with that by the standard PCG method using the initial guess u ¼ 0 at the beginning of every

optimization iteration. It is noted that the optimization using the method requires much smaller numbers of

the PCG iterations at later design iterations in comparison with the optimization not using it. The reduction

in the PCG iterations are due to the fact that the topology and shape of the structure do not change much

as the solution converges. Further research on improving this method may lead to a much faster iterative

PCG solver especially suitable for design optimization. In the subsequent discussion, we will call the present

method as the successive estimation method.

In the parallel PCG solver, most computations are performed in parallel at each of subdomains. However,
the following two types of data communication among subdomains should be considered. The first type of

communication is the communication occurring at nodes lying along the boundaries of adjacent sub-

domains. Some local quantities assigned on these nodes become global quantities after they are summed over

all the subdomain boundaries along which the nodes lie. Fig. 2 depicts the summation operations along the

boundaries. We will denote this type of communication by the operator Commbnd, so we can write
bqs ¼ Commbndð�qsÞ ð5Þ

where the hatted quantities are global quantities.
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The other type of communication is the communication required for the summation of some quantities q
over the entire subdomains. This communication will be denoted by Commsum as
Set
�rð1Þs

r̂ð1Þs
�zð1Þsbzð1sbpð1
s

i ¼
DO

EN
q ¼ Commsumð�qsÞ ð6Þ
where the operation Commsum is the summation operator and defined differently depending on whether �qs
and q are scalars, vectors or matrices.

The two types of communication operations are implemented by using the Message Passing Interface

(MPI) library (Malard, 1996; Message Passing Interface Forum, 1994) and the core of the parallelized PCG
algorithm employing Commbnd and Commsum operators is summarized as Box 1. As shown in Box 1, every

PCG iteration requires the communication operators several times and thus the subdivision pattern affects

the numerical efficiency of the PCG algorithm.

Box 1. Parallelized PCG algorithm (‘‘s’’ stands for the sth subdomain)
buð1Þ
s (¼ 0, frequently)

¼ �fs � Ksbuð1Þ
s

¼ Commbndð�rð1Þs Þ
¼ D

�1

s r̂ð1Þs
Þ ¼ Commbndð�zð1Þs Þ
Þ ¼ bzð1Þs

1

LOOP
�bðiÞs ¼ KsbpðiÞ

s

aðiÞ ¼ Commsumð�zðiÞTs r̂
ðiÞ
s Þ

CommsumðbpðiÞTs
�b
ðiÞ
s Þbuðiþ1Þ

s ¼ buðiÞ
s þ aðiÞbpðiÞ

s

Convergence check:

IF Commsumðjbuðiþ1Þ
s �buðiÞs jÞ

Commsumðjbuðiþ1Þ
s jÞ

< e, STOP

�rðiþ1Þ
s ¼ �rðiÞs � aðiÞ�bðiÞs
r̂ðiþ1Þ
s ¼ Commbndð�rðiþ1Þ

s Þ
�zðiþ1Þ
s ¼ D

�1

s r̂ðiþ1Þ
sbzðiþ1Þ

s ¼ Commbndð�zðiþ1Þ
s Þ

bðiþ1Þ ¼ Commsumð�zðiþ1ÞT
s r̂

ðiþ1Þ
s Þ

Commsumð�zðiÞTs r̂
ðiÞ
s Þbpðiþ1Þ

s ¼ bzðiþ1Þ
s þ bðiÞbpðiÞ

s

i ¼ iþ 1
D DO LOOP
2.2. Parallelization of the subspace iteration

While the parallelization strategy for linear static problems is almost established now, no unified parallel

eigensolver has been established yet. Although the eigensolver parallelization by loop or array partitioning
has been realized by Dongrra as SCALAPACK (Dongrra et al., 1994), such general-purpose library

programs may not be very efficient for large-scale structural eigenvalue problems from the viewpoint of

memory allocation and global system matrix assembly. So we use the domain decomposition approach to
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Fig. 2. Illustration for the role of the communication operator Commbnd acting on nodes lying along subdomain boundaries.
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enhance scalability and parallelization efficiency. To enhance the solution efficiency further, we propose a

technique similar to the successive estimation method employed in the parallelized PCG solver.

In parallelizing the eigensolver, several approaches have been suggested. Papadrakakis and Yakoumi-

dakis (1987) proposed a parallel PCG solver to minimize the Rayleigh quotient and Zhang and Moss (1994)

suggested the parallelization of the linear equation analysis appearing in the eigensolution analysis proce-
dure. In this work, however, we employ the subspace iteration method and parallelize it in the framework of

the domain decomposition.

Before getting into the parallelization of the subspace iteration method, we write down the key equations

in its serial version (see Bathe (1996) for more details)
Kxj ¼ kjMxj; j ¼ 1; 2; . . . ; p ð7Þ

Here, we assume that p eigensolutions are sought for. At the (iþ 1)th subspace iteration, we determine

Pðiþ1Þ, Kðiþ1Þ and Mðiþ1Þ from the following equations:
KPðiþ1Þ ¼ MXðiÞ ð8Þ

Kðiþ1Þ ¼ Pðiþ1ÞTKPðiþ1Þ ð9aÞ

Mðiþ1Þ ¼ Pðiþ1ÞTMPðiþ1Þ ð9bÞ

In Eq. (8), XðiÞ is the matrix consisting of q trial vectors at the ith iteration. We note that most of the

computation time at the (iþ 1)th iteration step is spent on the calculation of the projection matrix Pðiþ1Þ and

the projection of K and M onto the q dimensional subspace. Therefore, we pay attention to the parallel-

ization of them.
The parallel procedure to determine Pðiþ1Þ from Eq. (8) is the same parallel PCG procedure as explained in

the previous section. The Gaussian elimination-based direct solvers are generally efficient in handling

multiple right-hand sides, MXðiÞ, but they cannot be parallelized efficiently when the analysis domain is

decomposed into subdomains. To parallelize the matrix computations involving M in Eqs. (8) and (9b), we

decompose the mass matrix over Nd subdomains as
M ¼
XNd

s¼1

Ms ð10Þ
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Box 2 describes the present parallelized subspace iteration method. The operators Commsum in this case

involves the summation of matrices. Note that at every iteration, the communication operator Commsum is

called only twice if not considering the parallel procedure to solve for P
ðiþ1Þ
s . From this point of view, the

parallelized subspace iteration solver may be considered more efficient than the parallelized PCG solver.
Box 2. Parallelized subspace iteration method (described for the sth subdomain)
Set X
ð1Þ
s ¼ ðð�x1Þsð�x2Þs � � � ð�xqÞÞð1Þ

(q initial guesses for eigenvectors)

i ¼ 1

DO LOOP

Solve ðPðiþ1Þ
s Þ: (using parallel PCG solver)

KPðiþ1Þ ¼ MXðiÞ

K
ðiþ1Þ
s ¼ P

ðiþ1ÞT
s KsP

ðiþ1Þ
s

M
ðiþ1Þ
s ¼ P

ðiþ1ÞT
s MsP

ðiþ1Þ
s

Solve ðk;Rðiþ1ÞÞ:
½CommsumðK

ðiþ1Þ
s Þ�Rðiþ1Þ ¼

kðiþ1Þ
k ½CommsumðM

ðiþ1Þ
s Þ�Rðiþ1Þ

X
ðiþ1Þ
s ¼ P

ðiþ1Þ
s Rðiþ1Þ

Convergence check:

IF
jkðiþ1Þ

k �kðiÞk j
jkðiþ1Þ

k j
< eðk ¼ 1 � pÞ, STOP

i ¼ iþ 1

END DO LOOP
2.3. The role of successive estimation in eigenvalue analysis

To improve the solution efficiency of the parallel PCG solver from Eq. (8), we also use the successive

estimation method developed earlier. The role of the successive estimation method can be quite dramatic

since multiple right-hand sides are solved simultaneously. To see this, we consider the eigenvalue analysis

(not optimization) of the structure shown in Fig. 3(a) and compare the numerical performance of the

parallel subspace iteration methods with and without the use of the successive estimation scheme.

To find the lowest seven eigensolutions of the problem in Fig. 3(a), we simply used the same number of
the trial vectors. The analysis domain discretized by 5120 elements is decomposed into four subdomains; see

Fig. 3(b) and (c). Tables 1 and 2 compare the analysis histories by the parallel subspace iteration methods

with and without the use of the successive estimation scheme. The saving in the CPU time by the successive

estimation scheme is quite significant. When no successive estimation is used in the PCG solver, the number

of the PCG iterations remains unchanged after certain iteration numbers for each eigenmode. This is be-

cause the corresponding eigenvectors are almost converged after the iteration numbers. Therefore, the

successive estimation scheme within every eigenvalue analysis at each design iteration step must be used to

avoid unnecessary computations.
In the parallel eigenvalue analysis discussed above, the number q of the trial eigenvectors was the same as

the number p of the desired eigenvectors. When q becomes larger than p, the number of the subspace



Fig. 3. (a) A structure model to be used for parallel eigenvalue analysis (E ¼ 2:0� 108, m ¼ 0:3, q ¼ 1:0, point mass¼ 20); (b) the

domain discretization by 5120 elements and (c) the domain division for parallel computing.
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iterations can be substantially increased. So we use q which is equal to or larger than p by 1 or 2 in the

subsequent design problems.

2.4. Parallelization efficiency in the eigenvalue analysis

The efficiency of the proposed parallel topology optimization algorithm will obviously depend on how the
domain is decomposed. We will examine this aspect with the example shown in Fig. 4(a) where the domain is



Table 1

The iteration history for the parallel subspace iteration method not using the successive estimation scheme (the total elapsed time¼
102 s)

Subspace

iteration

number

PCG iteration number Sum

First

mode

Second

mode

Third

mode

Fourth

mode

Fifth

mode

Sixth

mode

Seventh

mode

1 631 635 680 696 650 622 613 4527

2 542 345 671 656 507 669 690 4080

3 424 329 326 494 540 552 552 3217

4 424 329 203 412 424 547 478 2817

5 424 329 203 357 424 422 479 2638

6 424 329 203 357 424 421 462 2620

7 424 329 203 357 425 340 458 2536

8 424 329 203 357 377 292 457 2439

9 424 329 203 357 376 280 456 2425

10 424 329 203 357 376 269 426 2384

11 424 329 203 357 376 232 398 2319

12 424 329 203 357 376 231 373 2293

13 424 329 203 357 376 231 373 2293

14 424 329 203 357 376 231 373 2293

15 424 329 203 357 376 231 373 2293

16 424 329 203 357 376 231 373 2293

17 424 329 203 357 376 231 373 2293

Frequency

(Hz)

5.05 27.10 40.83 64.30 106.05 121.51 148.88 45,760

Table 2

The iteration history for the parallel subspace iteration method using the successive estimation scheme (the total elapsed time¼ 58 s)

Subspace

iteration

number

PCG iteration number Sum

First

mode

Second

mode

Third

mode

Fourth

mode

Fifth

mode

Sixth

mode

Seventh

mode

1 631 635 680 696 650 622 613 4527

2 479 633 671 655 658 666 683 4445

3 2 290 504 659 531 683 686 3355

4 2 2 616 290 507 321 440 2178

5 2 2 2 104 304 318 436 1168

6 2 2 2 2 242 418 342 1010

7 2 2 2 2 145 316 264 733

8 2 2 2 2 140 179 270 597

9 2 2 2 2 88 178 198 472

10 2 2 2 2 2 98 265 373

11 2 2 2 2 2 83 198 291

12 2 2 2 2 2 2 146 158

13 2 2 2 2 2 2 211 223

14 2 2 2 2 2 2 64 76

15 2 2 2 2 2 2 53 65

16 2 2 2 2 2 2 42 54

17 2 2 2 2 2 2 2 14

Frequency

(Hz)

5.05 27.10 40.83 64.30 106.05 121.51 148.88 19,739
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divided into 1, 2, 4, 8, and 16 subdomains. In general, the important performance measure in parallelized
algorithms is the parallel efficiency (Kumar et al., 1994) defined as EðP Þ ¼ Tseq=ðP � T ðP ÞÞ where P repre-



Fig. 4. (a) Domain decomposition of 2-dimensional structure (number of subdomains: 1, 2, 4, 8, 16) and (b) the relation between the

elapsed time and the number of the used processors.
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sents the number of used processors, Tseq, T ðPÞ are the runtime of the sequential algorithm and the parallel

algorithm, respectively. The elapsed time and the parallel efficiency as the function of the process number are

plotted in Fig. 4(b).

Some remarks may be made regarding the parallel efficiency shown in Fig. 4(b). When the number of
subdomains in the domain decomposition increases, the number of the shared nodes by subdomains in-

creases, so that the parallel efficiency drops. This phenomenon can also be explained by Amdahl�s effect

(Amdahl, 1967). According to Amdahl�s effect, no parallelized program can exhibit the parallelization

efficiency that is proportional to the number of processors because of the serial portion inside it.
3. Parallelization of topology optimization for free vibration problems

3.1. A brief overview of eigenvalue maximization problems

In the density function method, the topology optimization problems that maximize the structural

eigenvalue within a prescribed amount of material can be described as:
Minimize f ðqÞ ¼ � lnðkw1

1 kw2

2 � � � kwNk
Nk

Þ ð11aÞ

subject to a mass constraint; hðqÞ ¼
XNe

e¼1

qeVe �M0 6 0 ð11bÞ

side constraints e6 qe 6 1ð0 < e � 1Þ ð11cÞ

where the objective function f is the weighted product of the first Nk eigenvalues by the weighting factor wj

and Ne is the number of finite elements used to discretize a design domain and Ve the volume of each element.

The functional form in Eq. (11a) was used by Kim and Kim (2002). The logarithmic function in Eq. (11a) for

structural eigenvalue topology optimization problems serves to balance the contributions of several eigen-

values to the sensitivity. To see this, we write the sensitivity of f with respect to qe
of
oqe

¼ �
XNk

j¼1

wj
1

kj

okj
oqe

ð12Þ
The density array q is defined as fq1; q2; . . . ; qe; . . . ; qNe
gT where qe is the relative density variable as-

signed to the eth finite element.
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In topology optimization based on the density method (Bendsøe and Sigmund, 1999), the constitutive

matrix is penalized as
Ce ¼ CeðqÞ ¼ ðqeÞ
n
C0 ð13Þ
where C0 is the constitutive matrix of a solid isotropic material and n is the penalty parameter (usually
between 2 and 3).

The sensitivities of the eigenvalue kj and h with respect to the design variable qe are given by (see Haftka

and G€urdal, 1992)
okj
oqe

¼ 1

qe
½nðxjÞTkeðxjÞ � kjðxjÞTmeðxjÞ� ð14Þ

ohðqÞ
oqe

¼ Ve ð15Þ
where ke and me are the element stiffness and mass matrices.

3.2. Parallelization of the optimality criteria algorithm

As an optimizer for topology optimization problems, various algorithms such Optimality Criteria (OC),

Method of Moving Asymptotes (MMA, Svanberg, 1987) can be employed. Borrvall and Petersson (2001)

usedMMA for the parallel static topology optimization while Kim (2001) used OC for the parallel static and

eigenvalue topology optimization. In this work, we employ the OC method and develop a parallelized

version of the OC method for the present eigenvalue-related topology optimization problems.
To use the OC method, we consider the following Lagrangian function for the optimization problem

stated as Eq. (11)
Lðq; lÞ ¼ f ðqÞ þ lhðqÞ ð16Þ
where l is a Lagrange multiplier and hðqÞ is treated as an equality constraint.

Using the Karush–Kuhn–Tucker condition for Eq. (16) and some function approximations, one can

obtain the well-known updating rule for the density design variable qe (Ma et al., 1993; Bendsøe and Sig-

mund, 2003):
qðiþ1Þ
e ¼

�
� 1

l
of =oqe

oh=oqe

�g

qðiÞ
e ¼ ðPeÞgqðiÞ

e ð17Þ
where
l ¼
PNe

e¼1ðð�of =oqeÞ=ðoh=oqeÞÞ
gqðiÞ

e Ve
M0

 !1=g
Note that of =oqe and oh=oqe in Eq. (17) involve the quantities associated only with the eth element, which

can be observed from Eqs. (14) and (15). Therefore, the design variable update rule in Eq. (17) can be

performed independently for each subdomain. The data communication is then needed only to evaluate
f and h for the convergence check. We use the following equations for the evaluation of h:
hðqÞ ¼
XNd

s¼1

�msð�qsÞ �M0 ¼
XNd

s¼1

XðNeÞs

e¼1

qeVe

 !
�M0 ¼ 0 ð18Þ
where ðN eÞs denotes the number of finite elements used to discretize the subdomain.
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To use the OC algorithm with the updating rule in Eq. (17) for eigenvalue problems, the shifting scheme is

used. This means that the following form of the Lagrangian function Lðq; lÞ is used with the objective

function and the Lagrange multipliers replaced by ~f and ~l, respectively:
Set

i ¼
DO

C

S

D

E

A
C

i
EN
Lðq; lÞ ¼ f þ lh ¼ ðf � rhÞ þ ðlþ rÞh ¼ ~f þ ~lh ð19Þ

where r is adjusted to satisfy
r >
of =oqe

oh=oqe

� �
for all e ¼ 1; . . . ;Ne ð20Þ
The sensitivity analysis and the shifting scheme are standard (see, Diaz and Kikuchi, 1992; Ma et al.,

1995a,b; Kim and Kim, 2000, 2002), but are given here for the sake of completeness.

The parallelized OC method developed in this work is outlined as Box 3. While the parallel PCG solver

requires both Commbnd and Commsum, the parallel OC algorithm requires Commsum only: see Boxes 1 and 3.

From the viewpoint of the communication efficiency, therefore, the parallelization of the OC algorithm is

more efficient than that of the PCG method. Since the present parallel algorithms are based on the single

program multiple data (SPMD) processing strategy, good scalability is expected. This scalability aspect will
be numerically examined in the next section.

Box 3. Parallelized OC method (described for the sth subdomain)
�qð1Þ
s (uniform distribution with prescribed mass)

1

alculate f 0
e and h0e

et S ¼ fej16 e6 ðNeÞsgeM0 ¼ M0

O

l ¼ Commsum

P
e2S

ð�f 0e=h
0
eÞ

gqðiÞe Ve
� �

eM0

� �1=g

qðiþ1Þ
e ¼ � 1

l
f 0e
h0e

� �g
qðiÞ
e

Set S ¼ fejql < qe < qug
Set Sl ¼ fejqe 6 qlg
Set Su ¼ fejqe P qug

qðiþ1Þ
e ¼

ql if ðe 2 SlÞ
qu else if ðe 2 SlÞ
qðiþ1Þ
e else

0@
Convergence check:

IF jCommsumð�msðqðiþ1ÞÞÞ�M0j
M0

< e, STOPeM0 ¼ M0 � Commsum

P
e2Sl qlVe þ

P
e2Su quVe

� �
ND DO LOOP

pply move limits
onvergence check:

IF Commsumðj�fsðqðiþ1ÞÞ��fsðqðiÞÞjÞ
Commsumðj�fsðqðiþ1ÞÞjÞ < e, STOP

¼ iþ 1

D DO LOOP



Fig. 5. The schematic description of the successive estimation scheme applied to both the analysis loop and the optimization loop.
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In eigenvalue topology optimization problems, the successive estimation scheme is also used both in the

iterative analysis loop and in the iterative optimization loop. The schematic description of the strategy is

illustrated in Fig. 5. In the next section, we will examine the numerical performance of the present parallel

strategy for eigenvalue topology optimization.
4. Numerical verification

In this section, we consider first a two-dimensional reinforcing problem of a cantilevered beam to check

the numerical performance of the present parallel method and then solve two large-size optimization

problems which would be formidable without a parallel optimization algorithm.
4.1. Case study 1: reinforcement of a cantilevered beam

Fig. 6(a) depicts the design problem for which we aim at maximizing the eigenfrequency of the structure.
In this optimization problem, the lowest 4 eigenvalues are used in defining the objective function, Eq. (11)

with w1 ¼ w2 ¼ w3 ¼ w4. The mass constraint ratio is 30%. The lowest four eigenmodes for the structure

having a uniform density distribution of q ¼ 0:3 are shown in Fig. 6(b). The optimized results for the

meshes consisting of 160 · 32 and 320 · 64 elements are shown in Fig. 6(c). In obtaining the result in Fig.

6(c) and the next examples, a checkerboard controlling filter is used (Sigmund, 1994). The obtained results

are consistent with existing results and exhibit mesh dependence. Since the mesh dependence issue is now

well understood (see, e.g., Sigmund and Petersson, 1998 or Bendsøe and Sigmund, 2003), this issue will not

be discussed here. For the solution verification, the eigenfrequencies before and after optimization are
compared in Table 3.

To check the parallelization efficiency, we divide the structure in Fig. 6(a) into subdomains shown in Fig.

7(a). Fig. 7(b) shows how the elapsed time varies with respect to the number of the used processors. The

decrease in the elapsed time for the eigenvalue topology design optimization slows down as the number of

processors (equal to the number of subdomains) increases, as expected; see Fig. 7(b). For this analysis, the

mesh consisting of 160 · 32 elements is used and the successive estimation strategy proposed in this

investigation is utilized. To see the effect of the successive estimation strategy on the solution speedup, the

elapsed times to complete the design optimization with and without the use of the strategy are compared in
Fig. 8. When the strategy is used, the elapsed time increases almost linearly to the optimization iteration

number. However, the elapsed time increases rather rapidly, otherwise. This figure may demonstrate the



Fig. 6. (a) An eigenvalue topology design problem description (E ¼ 2:0� 108, m ¼ 0:3, q ¼ 1:0, point mass¼ 20); (b) the lowest four

eigenmodes of the structure having the uniform density of 0.3 in the design domain and (c) the optimized results for the mass constraint

ratio of 30%.
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Table 3

The eigenfrequencies before and after optimization for the problem depicted in Fig. 6(a)

Eigen frequency Before optimization After optimization

160· 32 mesh 320· 64 mesh

First 3.46 Hz 4.37 Hz (+26.3%) 4.40 Hz (+27.2%)

Second 12.88 Hz 17.78 Hz (+38.0%) 19.35 Hz (+50.2%)

Third 21.88 Hz 28.28 Hz (+29.3%) 29.65 Hz (+35.5%)

Fourth 26.01 Hz 34.98 Hz(+34.5%) 43.20 Hz (+66.1%)

Fig. 7. (a) Various subdivisions of the design domain shown in Fig. 6(a) and (b) the relation between the elapsed time and the number

of the used processors (for the 160· 32 mesh).

Fig. 8. The comparison of the elapsed times with and without the use of the successive estimation strategy (using eight processors,

truncated at 50 iterations).
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role of the successive estimation strategy also in design optimization. The reduction in the elapsed time by

the proposed strategy is substantial.
4.2. Case study 2: three-dimensional elbow design

As a large-scale topology optimization problem, we consider the design of a three-dimensional canti-

levered elbow with a rigid block attached to its one end. The problem is illustrated in Fig. 9(a). The design
objective is to maximize the lowest 2 eigenvalues that are weighted equally in the objective function. The

mass constraint ratio used is 15% and the design domain is discretized by 64,000 elements. This mesh size

amounts to 213,003 degrees of freedom. The design domain is divided into 36 domains as shown in Fig.

9(b). Since this large-size design problem is not feasible to solve with a single or a few CPU�s, we solve this
problem only with 36 CPU�s. The main motivation of this problem is to address the potential of the parallel

eigenvalue topology optimization strategy in handling large-size design problems. The optimized result is

shown in Fig. 9(c) and the eigenfrequencies before and after the optimization are compared in Table 4. It is

apparent that the large-size problems can be solved satisfactorily within reasonable time if the number of
CPU�s for parallel optimization is sufficient.
4.3. Case study 3 (practical application): optical pickup bobbin design

As a practical large-scale topology optimization problem, we consider the design of an axial-type optical

pickup bobbin design shown in Fig. 10. The optical lens will be mounted on the side of the cylindrical hole

of radius r2 ¼ 1:85 mm. The bobbin moves along the small hole of radius r1 ¼ 0:7 mm and rotates around
Fig. 9. (a) The eigenvalue maximization problem of an elbow structure (E ¼ 2:0� 108, m ¼ 0:3, q ¼ 1:0); (b) the division of the design

domain into 36 subdomains and (c) The optimized result.

Table 4

The eigenfrequencies before and after optimization for the problem depicted in Fig. 9(a)

Eigenfrequency Before After

First (Hz) 1.06 5.39

Second (Hz) 1.23 8.65

Number of optimization iterations 76



Fig. 10. (a) Model and design domain for an axial-type pickup actuator (E ¼ 29:4 GPa, m ¼ 0:35, q ¼ 1:49 kg/mm3); (b) the division of

the design domain into 12 subdomains; (c) baseline design and (d) optimized design.

Table 5

The fundamental eigenfrequencies before and after optimization for the problem depicted in Fig. 10(a)

Quantity Before After

Fundamental eigenfrequency (kHz) 27.8 29.1

Mass (mg) 752 636

Number of optimization iterations 44
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it. The design objective in this investigation is to maximize the fundamental eigenvalue of the bobbin itself

while the mass constraint ratio is 40%. The detailed modeling technique of the axial-type bobbin is not

given as this design example is used to show the effectiveness of the parallel topology optimization. The

design domain is discretized by 135,807 elements which amount to 407,421 degrees of freedom. Fig. 10(b)
shows a design domain and 12 subdomains for the parallelization. In this example, density design variables

are linked along the z-axis (see Fig. 10(b)) for good manufacturability.

Fig. 10(c) and (d) show the initial baseline design and the optimized design by the present investigation.

The fundamental eigenfrequencies before and after the optimization are also compared in Table 5. Table 5

shows that as a result of the topology optimization, the mass is reduced and the fundamental eigenfre-

quency is increased. Large-size design problems like this one would be difficult to handle without using the

parallelized topology optimization method.
5. Conclusions

We developed a parallel topology optimization method in order to handle the large-size design opti-

mization problems that may be encountered in practical optimization applications. In the frame of domain

decomposition, both the numerical analysis and the optimization process were parallelized focusing on

eigenvalue maximization problems.

Some contributions of the present work may be summarized as:

• The parallel optimality criteria algorithm based on domain decomposition is developed with which the

design variables can be updated with the minimum communication between decomposed subdomains.
• A parallel subspace iteration based on the PCG solver was proposed for structural eigenvalue problems.

To speed up the solution convergence, the successive estimation strategy for initial guesses is employed.

• The present parallel topology optimization method is successfully applied to large-size structural design

problems which are otherwise formidable.
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